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Abstract. We discuss recent results concerning statistical regularities in the return intervals of volatility
in financial markets. In particular, we show how the analysis of volatility return intervals, defined as the
time between two volatilities larger than a given threshold, can help to get a better understanding of
the behavior of financial time series. We find scaling in the distribution of return intervals for thresholds
ranging over a factor of 25, from 0.6 to 15 standard deviations, and also for various time windows from one
minute up to 390 min (an entire trading day). Moreover, these results are universal for different stocks,
commodities, interest rates as well as currencies. We also analyze the memory in the return intervals which
relates to the memory in the volatility and find two scaling regimes, � < �∗ with α1 = 0.64 ± 0.02 and
� > �∗ with α2 = 0.92 ± 0.04; these exponent values are similar to results of Liu et al. for the volatility.
As an application, we use the scaling and memory properties of the return intervals to suggest a possibly
useful method for estimating risk.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 05.45.Tp Time
series analysis – 89.75.Da Systems obeying scaling laws

1 Introduction

Interdisciplinary work has the potential to lead to results
interesting for people from very different fields. In par-
ticular, collaborative work joining economists and physi-
cists has resulted in a better understanding of economic
fluctuations. Until relatively recently, theories of economic
fluctuations invoked the label of “outliers” (bubbles and
crashes) to describe fluctuations that do not agree with
existing theory. However, recent research found evidence
that the probability distribution of price fluctuations can
be described by a power law [1–5]. Hence, there are no
“outliers” since this law also holds for extremely large and
unpredictable changes of magnitude sufficient to wreak
havoc.

In economics, large and unpredictable fluctuations
constitute risk for investments as well as the whole econ-
omy. For instance, in October 1929 the stock markets all
over the world crashed, which initiated a worldwide eco-
nomic crisis. However, significant risk could be inherent
not only in worldwide market crashes, but also in less
hazardous fluctuations if they are unexpected and invest-
ments are not well protected against them. Banks have to
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properly estimate the risk of their investments and make
provisions in order to be able to withstand large fluctua-
tions without going bankrupt.

In recent years, economic data bases have become
available with a huge amount of data points, enabling
physicists to analyze them as dynamic systems. The num-
ber of data points becames comparable to nano systems,
but is still smaller than in bulk physical systems (say
≈108, compared to Avogadro’s number of ≈1023), but the
“thermodynamic limit” is reached also for much smaller
numbers so that methods from statistical physics can be
applied to financial data. However, even in large data
bases there is only a small amount of extremely large
events so that they are still difficult to study. Hence, it
is very important to find laws describing the entire data
set, so that we can understand the extreme events (that
matter!) by extensive analysis of small fluctuations (that
do not matter).

Large events do not only occur in economics, but also
appear in very different fields like climate or earthquakes.
For instance, Gutenberg and Richter related huge earth-
quakes to everyday tremors in one single power law [6,7].
If one wants to prepare for an earthquake large enough to
cause serious problems, it might be less important to ex-
actly know how strong the next shock will be, but rather
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to know when a large shock will occur. A good approach is
to study the time (return interval) between two successive
shocks larger than a threshold above which a shock or fluc-
tuation would damage a building or lead to bankruptcy of
a bank, for instance. This way one can gather information
of the temporal structure of the fluctuations.

Recently Bunde et al. [8–10] studied the statistics of re-
turn intervals and found that the long-term memory leads
to a stretched exponential distribution and clustering of
extreme events. They showed all these features in cli-
mate records and suggested that these phenomena should
also occur in heartbeat records, internet traffic and stock
volatility. Indeed, we find similar results in financial mar-
kets. We apply their scaling approach and find that the
distribution of return intervals exhibits scaling properties
for very different time scales and thresholds which seems
to be universal for various financial time series. Further-
more, we analyze the short-term and long-term memory
effects. We can apply these results in order to get a new
method of risk estimation by predicting the future risk
from the current return intervals.

2 Scaling and universality

Statistical physics deals with systems comprising a very
large number of interacting subunits, for which predict-
ing the exact behavior of the individual subunit would
be impossible. Hence, one is limited to making statistical
predictions regarding the collective behavior of the sub-
units. Recently, it has come to be appreciated that many
such systems consisting of a large number of interacting
subunits obey universal laws that are independent of the
microscopic details. The finding, in physical systems, of
universal properties that do not depend on the specific
form of the interactions gives rise to the intriguing hy-
pothesis that universal laws or results may also be present
in economic and social systems [1,11]. An often-expressed
concern regarding the application of physics methods to
the social sciences is that physical laws are said to apply
to systems with a very large number of subunits (of or-
der 1020), while social systems comprise a much smaller
number of elements. However, the “thermodynamic limit”
is reached in practice for rather small systems. For ex-
ample, in early computer simulations of gases or liquids,
reasonable results are already obtained for systems with
20–30 atoms.

2.1 Background

Suppose we have a small bar magnet made up of
1012 strongly-interacting subunits called “spins”. We
know it is a magnet because it is capable of picking up
thumbtacks, the number of which is called the order pa-
rameter M . As we heat this system, M decreases and
eventually, at a certain critical temperature Tc, it reaches
zero. Since M approaches zero at Tc with infinite slope,
the transition is remarkably sharp, hence M is not an
analytic function. Such singular behavior is an example

of a “critical phenomenon”. Recently, the field of critical
phenomena has been characterized by several important
conceptual advances, two of which are scaling and univer-
sality.

2.2 Predictions of scaling

The scaling hypothesis has two categories of predictions,
both of which have been remarkably well verified by a
wealth of experimental data on diverse systems. The first
category is a set of relations, called scaling laws, that serve
to relate the various critical-point exponents characteriz-
ing the singular behavior of functions such as M .

The second category is a sort of data collapse, which is
perhaps best explained in terms of our simple example of
a uniaxial magnet. We may write the equation of state as
a functional relationship of the form M = M(H, τ), where
M is the order parameter,H is the magnetic field, and τ ≡
(T − Tc)/Tc is a dimensionless measure of the deviation
of the temperature T from the critical temperature Tc.
Since M(H, τ) is a function of two variables, it can be
represented graphically and M vs. τ for a sequence of
different values of H . The scaling hypothesis predicts that
all the curves of this family can be “collapsed” onto a
single curve provided one plots not M vs. τ but rather a
scaled M (M divided by H to some power) vs. a scaled τ
(τ divided by H to some different power).

The predictions of the scaling hypothesis are supported
by a wide range of experimental work, and also by numer-
ous calculations on model systems. Moreover, the general
principles of scale invariance used here have proved use-
ful in interpreting a number of other phenomena, ranging
from elementary particle physics and galaxy structure to
finance [1,12–14].

2.3 Universality

The second theme goes by the name “universality”. It was
found empirically that one could form an analog of the
Mendeleev table if one partitions all critical systems into
“universality classes”. Consider, e.g., experimental MHT
data on five diverse magnetic materials near their respec-
tive critical points. The fact that data for each material
collapse onto a scaling function supports the scaling hy-
potheses, while the fact that the scaling function is the
same (apart from two material-dependent scale factors)
for all five diverse materials is truly remarkable. This ap-
parent universality of critical behavior motivates the fol-
lowing question: “which features of this microscopic inter-
particle force are important for determining critical-point
exponents and scaling functions, and which are unimpor-
tant?”

Two systems with the same values of critical point ex-
ponents and scaling functions are said to belong to the
same universality class. Thus the fact that the exponents
and scaling functions are the same for all five materials im-
plies they all belong to the same universality class. Hence
we can pick a tractable system to study and the results
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we obtain will hold for all other systems in the same uni-
versality class.

2.4 Scaling and universality in systems outside
of physics

At one time, many imagined that the “scale-free” phenom-
ena are relevant to only a fairly narrow slice of physical
phenomena [15,16]. However, the range of systems that
apparently display power law and scale-invariant corre-
lations has increased dramatically in recent years, rang-
ing from base pair correlations in noncoding DNA [17],
lung inflation [18] and interbeat intervals of the human
heart [19] to complex systems involving large numbers of
interacting subunits that display “free will”, such as city
growth [20], university research budgets [21], and even bird
populations [22].

3 Memory

Scaling and universality are important properties of a data
set describing the global behavior of the probability dis-
tribution. This may, or may not, fully characterize a se-
quence of data points, depending on the time organization
of the sequence. If it is uncorrelated, data points are in-
dependent of each other and totally determined by the
probability distribution. On the other hand, if the points
are correlated, it will also affect the order in the data set.
This behavior is also called “memory”, as the data points
“remember” previous values.

Many studies showed that returns do not exhibit any
linear correlations extending over more than a couple of
minutes, but their absolute value, which is a measure for
volatility, exhibits strong correlations. This leads to long
periods of high volatility as well as other periods where
the volatility is low. This effect is known as volatility clus-
tering. We find similar effects also for return intervals, so
that large (small) return intervals are more likely to be
followed by large (small) return intervals.

4 Databases analyzed

Our results are based on the analysis of 5 different
databases:

• (i) Trades and Quotes (TAQ) database for a 2-year
period, from January 2, 2001 to December 31, 2002. It
covers all securities traded in the three major US stock
exchanges, namely, (a) the New York Stock Exchange
(NYSE); (b) the American Stock Exchange (AMEX);
and (c) the National Association of Securities Dealers
Automated Quotation (Nasdaq). All 30 companies of
the Dow Jones Industrial Average index (DJIA) are
selected. The datasets of 160 000 points per DJIA stock
with the sampling time of 1 min are analyzed.

• (ii) Standard and Poor’s 500 index (S&P 500) for a
13-year period, from January 2, 1984 to December 31,
1996, with the sampling time of 10 min. The S&P
500 index, which consists of 500 companies, is a bench-
mark of the stock markets for the United States. To-
tally, 130 000 data points are studied.

• (iii) Daily stock prices from http://finance.
yahoo.com. The website has the historical price for
more than 6000 American stocks. For a typical stock
like General Electric (GE), or International Business
Machine (IBM), the website has the daily data for 44
years, from January 2, 1962 to now. The data size is
about 11 000 data points each.

• (iv) Daily exchange rates of 35 other currencies to
United States Dollar (USD) and federal funds rate
from http://www.federalreserve.gov. The begin-
ning and ending dates are different for those records.
A typical rate, USD vs. Japanese Yen (JPY), starts
from January 4, 1971 to now. The USD/JPY rate
has around 9000 points for the 35-year period. Fed-
eral funds rate starts from July 1, 1954 to now, which
has around 13 000 data points for the 52-year period.

• (v) Daily spot price of west Texas intermediate
(WTI) crude oil from http://www.eia.doe.gov
and daily gold price (London P.M.) from
http://www.onlygold.com. Oil price starts from
December 30, 1985 to now, totally around 5000 points.
The range of gold price is from January 2, 1985 to
now, the number of data points is about 5000.

5 Returns and volatilities

One basic measurement for changes in security prices, for-
eign exchange rates or other market quantities is their
“return”, giving the relative price change in a time inter-
val. Returns show the speed and direction of the market
movement. For example, if most returns are positive dur-
ing a few years, the stock market is called to be a “bull
market”, while we call it a “bear market” if we observe
mainly negative returns. The fluctuations in returns build
the common behavior for financial markets, providing up-
side opportunities as well as downside risk to traders and
investors. To characterize the volatile market, “volatility”
is introduced as another fundamental concept. It describes
the magnitude of the market fluctuations, irrespective of
the direction.

5.1 Returns: scaling and universality

The nature of the distribution of price fluctuations in fi-
nancial time series has been a topic of interest for over
100 years [23]. A reasonable a priori assumption, moti-
vated by the central limit theorem, is that the returns are
independent, identically Gaussian distributed (i.i.d.) ran-
dom variables, which results in a Gaussian random walk
in the logarithm of price.

Empirical studies [1–5,13,24–28] show that the distri-
bution of returns has pronounced tails, in striking con-
trast to that of a Gaussian distribution. The cause of
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the power law tails is a subject of great current interest,
involving the analysis of the price impact of orders and
studies of limit order books [29–36]. In addition to being
non-Gaussian, the process of returns shows another in-
teresting property: “time scaling” — that is, the distribu-
tions of returns for various choices of ∆t, ranging from one
day up to even one year have similar functional forms [1].
These results together would suggest that the distribu-
tion of returns is consistent with a Lévy stable distribu-
tion [1,28,37–39], the rationale for which arises from the
generalization of the central limit theorem to random vari-
ables which do not have a finite second moment. Empirical
studies suggest, however, that the tails of the return distri-
bution are inconsistent with the stable Paretian hypoth-
esis [2–5,13,40–45]. In particular, alternative hypotheses
for modeling the return distribution were proposed, which
include a log-normal mixture of Gaussians [41], Student
t-distributions [42–44], and exponentially-truncated Lévy
distributions [13,46–48].

The basic quantity studied for individual companies
with index i is the price Si(t). The time t runs over the
working hours of the stock exchange — removing nights,
weekends and holidays. For each company, we calculate
the return

Gi ≡ Gi(t,∆t) ≡ lnSi(t+∆t) − lnSi(t). (1)

For small changes in Si(t), the return Gi(t,∆t) is approx-
imately the forward relative change, Gi(t,∆t) ≈ [Si(t +
∆t)−Si(t)]/Si(t). Similar definitions are applied to other
quantities like foreign exchange rates.

Previous empirical works studied the cumulative dis-
tributions — the probability of a return larger than or
equal to a threshold — of returns Gi for some time in-
tervals. For each stock, the asymptotic behavior of the
functional form of the cumulative distribution is consis-
tent with a power-law,

P{Gi > x} ∼ x−αi , (2)

where αi is the exponent characterizing the power-law de-
cay. After normalizing the returns with their standard de-
viations in the 2-year period, which makes returns of dif-
ferent stocks comparable, Gopikrishnan et al. estimated
the exponent αi by a power-law regression. They obtained
the average value α � 3 for the 1000 American stocks for
both positive and negative tails of the distribution. Sim-
ilar results are found in the analysis of daily returns of
30 German stocks composing the DAX index [2], foreign
exchange rates [4], and daily CRSP returns [24].

5.2 Volatility and its correlations

Since volatility is supposed to describe the magnitude of
the fluctuations, a direct definition of volatility is the ab-
solute value of the return. When we study many datasets,
different stocks or exchange rates have different sizes of
returns or volatilities. To compare them, we define the

volatility g(t) as the absolute returns normalized by their
standard deviation

gi(t) ≡ |Gi(t)|
(〈Gi(t)2〉 − 〈|Gi(t)|〉2)1/2 , (3)

where 〈...〉 is the time average over the whole dataset.
In contrast to daily volatilities, the intraday data are

known to show specific patterns [49–51], due to different
trader behavior at different periods during the trading
day. For example, the market is very active immediately
after the opening [51], due to information arriving while
the market is closed. The intraday pattern exhibits a pro-
nounced peak at the opening hours, a minimum around
the noon and a slight peak at the closing hours. This daily
oscillation will cause some artificial correlations. One way
to remove the intraday pattern is dividing the volatility
by its average at the corresponding time of the day.

From the volatility definition, it is reasonable to con-
clude that the cumulative distribution of volatility also has
a power-law tail, since both positive and negative tails
of the cumulative distribution of returns are consistent
with a power-law. Liu and collaborators [49] found that
the cumulative distribution of volatility is consistent with
power-law asymptotic behavior for the S&P 500 index and
its 500 component stocks,

P (V iT > x) ∼ x−µ, (4)

where V iT is the average of |Gi(t)| over a time window T ,
which is their definition of volatility. In the rest of this pa-
per, we use equation (3) as the volatility definition. They
find an exponent µ � 3, well outside the stable Lévy range
0 < µ < 2. For a systematic study of the PDF dependence
on company size, see [52,53], and references therein.

Numerous studies analyzed the correlations of volatil-
ities [24,49–51,54–62] which can be measured by the au-
tocorrelation function (ACF). The volatility turns out to
be long-term correlated, meaning that the ACF follows a
power law

ACF ≡ 〈gi(t)gi(t+ τ)〉 ∼ τ−γ , (5)

with exponent γ � 0.3, while the autocorrelation for re-
turns decays exponentially,

〈Gi(t)Gi(t+ τ)〉 ∼ e−τ/τ0, (6)

with the characteristic time τ0 � 4 min for the S&P 500 in-
dex [49], for example.

More accurate results are obtained by detrended fluc-
tuation analysis (DFA) [63–65]. This method is based on
the idea that a correlated time series can be mapped to
a self-similar process by integration. Therefore, measuring
the self-similar feature can indirectly tell us information
about the correlation properties. DFA permits the detec-
tion of long-range correlations embedded in a nonstation-
ary time series, which is very common for records from fi-
nancial markets. After removing trends, the DFA method
computes the root-mean-square fluctuations F (�) of time
series within windows of � points, and determines the cor-
relation exponent α from the scaling function F (�) ∼ �α.
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Fig. 1. Illustration of volatility return intervals. The volatility
is normalized by its standard deviation. The solid circles are
volatility values of the stock IBM on May 10, 2002. Return
intervals τ1, τ2 and τ3 for thresholds q = 1, 2 and 3 respectively
are displayed. Adapted from [74].

The exponent α is related to the autocorrelation function
exponent γ by

α = 1 − γ/2. (7)

If α > 0.5, the time series has long-term correlations and
exhibits persistent behavior, meaning that large (small)
values are more likely to be followed by large (small) val-
ues. The value α = 0.5 indicates that the signal is uncor-
related (white noise). While with α < 0.5, the system has
anti-correlation (or negative correlation). However, our re-
sults show some crossover in the volatility DFA curves.
Split by �∗ = 390, which represents 1 day, we find

α1 = 0.66 ± 0.01 (8a)

(group mean±standard deviation) for the short scale
regime (� < �∗), and

α2 = 0.98 ± 0.04 (8b)

for the large scale regime (� > �∗) for 30 DJIA stocks and
S&P 500 index, as shown in Figure 8. This result is con-
sistent with earlier studies which also noted the crossover
in DFA [49]. A similar crossover from short scales to large
scales with similar values of α1, α2 has also been found
for intertrade times [66].

6 Properties of volatility return intervals

The study of volatilities has been in the focus of econo-
physics for many years. In particular, understanding the
variability in price movements may contribute to better
risk estimation and portfolio management [67–73]. A new
approach to this is analyzing the return interval, which
is the time interval between volatilities above a certain
threshold q [73–75]. Figure 1 illustrates the generation of
return intervals. The time series of return intervals con-
tains the temporal structure for those events. Also, it may
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Fig. 2. (Color online) Distribution function Pq(τ ) of the return
intervals τ of the volatility records of (a) oil and (b) gold, for
13 threshold values q from 0.6 to 3.0 (◦ 0.6, � 0.8, ♦ 1.0, �
1.2, � 1.4, � 1.6, � 1.8, + 2.0, × 2.2, ∗ 2.4, A 2.6, B 2.8
and C 3.0). Figures (c) and (d) show the scaled plots where
Pq(τ )τ̄ is plotted versus τ/τ̄ . Figure (e) shows the scaled plots
of 7 financial time series of commodity, interest rate, stock and
currency for q = 1.0 (◦ oil, � gold, ♦ federal funds rate, �
IBM, � S&P500, � USD vs. JPY and � UK Pound vs. Swiss
Franc).

inherit the long-term properties of the volatility. Return
intervals have also been studied in many other fields [76],
like climate [77], seismic activities [78], solar flares [79],
spikes in neurons [80] and turbulence in magnetic con-
fined plasma [81]. It is calculated in similar ways but with
different names, like waiting time, interocurrence time, in-
terspike intervals, or laminar phases etc.

6.1 Scaling and universality of the distribution

In order to characterize the time series of return intervals
{τ} between volatilities above a threshold q, we start with
analyzing their probability density function (PDF), Pq(τ),
similar to Yamasaki et al. [73]. Figure 2 shows Pq(τ) of
return intervals for (a) Oil and (b) Gold for thresholds q
between 0.6 and 3 standard deviations. The distributions
seem to be very different for different thresholds, they
get broader for larger thresholds since the intervals be-
tween volatilities above larger thresholds are longer than
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Fig. 3. (Color online) Scaled distributions of return intervals of
original and shuffled data for different time resolutions ∆t. The
scaled PDF Pq(τ )τ̄ of return intervals for GE stock is shown as
a function of scaled time interval τ/τ̄ for threshold q = 2. The
sampling times are ∆t = 1, 10, 30 min and 1 day. Filled symbols
are for original data while open symbols correspond to shuffed
data (down-shifted by factor 10). These symbols collapse onto
two lines, one for original return intervals and one for shuffled
data, which supports the scaling relation in equation (9). Also,
the original return intervals suggest a stretched exponential
scaling function, equation (11), since the line fitting the solid
symbols is equation (11), with a = 4.86 and γ = 0.30. The
stretched exponential is a result of the long-term correlations
in the volatility records. The shuffled volatility records display
no correlation, indicated by the good fit (solid line) to the
Poisson distribution, equation (10).

for smaller values of q. Now the question is, are there any
scaling relations between these PDFs?

If we scale the return intervals τ by the mean interval
τ̄ ≡ τ̄ (q) with threshold q, the PDFs of the scaled time
series τ/τ̄ approximately collapse onto a single curve as
shown for Oil and Gold in Figures 2c and 2d. This suggests
the existence of a scaling relation [73]

Pq(τ) =
1
τ̄
f

(τ
τ̄

)
. (9)

The scaling function f(x) does not depend explicitly on
q, but only through the mean return interval τ̄ . Hence if
Pq(τ) is known for one value of q, equation (9) can make
predictions for other values of q — in particular for very
large q (rare events), which are difficult to study due to
the lack of data.

Figure 2e shows quite impressive the universality of the
scaling relation equation (9) since it holds for a wide range
of assets, namely commodities like oil and gold, the stock
IBM, the stock market index S&P 500, and the foreign
exchange rates USD vs. JPY and UK Pound vs. Swiss
Franc for 0.6 ≤ q ≤ 3.0.

For statistical analysis, the time resolution of the
records is an important aspect since the system may ex-
hibit diverse behavior in different time windows ∆t. In
Figure 3 we analyze four time scales for a typical stock,
GE (q = 2), by combining the intraday and daily data.
The figure shows that for ∆t = 1, 10, 30 min and 1 day,
the Pq(τ)τ̄ curves collapse onto one curve, which shows the

persistence of the scaling for a broad range of time scales.
For larger thresholds like q = 3 or q = 4 the curves fluc-
tuate more due to the limited data set. Thus there seems
to be a universal structure for stocks not only in different
companies, but also in each stock with various time reso-
lutions. For a related study of persistence in different time
scales of financial markets, see [82].

6.2 Form of scaling function

The shape of the PDF is of great interest for understand-
ing complex systems because it contains abundant infor-
mation about the underlying mechanics of the system.
Surprisingly, empirical results show that the scaling func-
tion appears to be quite similar not only for currencies and
commodities, but also for both daily and higher frequency
stock and index data. The similarity indicates probably
some “universal” structure in the time series for different
thresholds and time resolutions. To understand this, we
need to study the form of this scaling function f(x).

Compared to the one-parameter Poisson distribution
for uncorrelated records,

f(x) ∼ e−x/x
∗
, (10)

the scaling function of return intervals has a longer tail
(“fat tail”), as shown in Figure 3. The fat tail could come
from long-term correlations of the volatilities. We can test
this if we destroy the correlations by randomizing the se-
quence of the series (“shuffling”). The return interval PDF
becomes a Poisson distribution after shuffling the volatil-
ity records (Fig. 3). Hence, the long-term correlation is
the reason for the fat tail.

Recently Bunde et al. simulated time series with long-
term correlations and found that their return intervals ex-
hibit a two-parameter stretched exponential scaling func-
tion [9],

f(x) ∼ e−ax
γ

, (11)

where the exponent γ corresponds to the exponent of the
autocorrelation function. Therefore, we test the stretched
exponential for various datasets and compare it to a
power-law function. By studying the daily datasets of
seven stocks and seven currencies [73], Yamasaki et al. sug-
gested that the scaling function is consistent with a power-
law for x ≥ 1, where the tail exponent is around 2 for
both stock and currency data. The data are also consis-
tent with the possibility that f(x) is a stretched exponen-
tial for very large x-values. In this analysis, they study a
range of thresholds q between 1 and 1.7.

Wang et al. analyzed the intraday data for 30 DJIA
stocks and the S&P 500 index [74] and confirmed the sim-
ilarity of the scaling function shape for these 31 datasets.
Since the size of intraday data is more than 15 times larger
than that of daily data for stocks and currencies (aver-
age 160 000 data points vs. around 10 000 points), they
were able to analyze a much larger range of thresholds,
2 ≤ q ≤ 6. They suggested that the data can be well fit
by a stretched exponential form with γ = 0.38± 0.05 and
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Fig. 4. (Color online) Conditional PDF Pq(τ |τ0) of the return
intervals τ of the volatility records of the daily oil and gold
time series, for τ0 in the bottom octant Q1 (full symbols) and
in the top octant Q8 (open symbols) versus scaled interval
τ/τ̄ for seven threshold values q from 1.00 to 1.70. The lines

show nonliner fits to a stretched exponential f(x) ∼ e−axγ

,
equation (11), with exponents γ = 0.27 (Q1) and 0.30 (Q8) for
oil and 0.25 (Q1) and 0.25 (Q8) for gold.

a = 3.9 ± 0.5. To examine the scaling for larger thresh-
olds with good statistics, Wang et al. calculated the return
intervals of each DJIA stock, and then aggregate all the
data. They found that the scaling behavior could be ex-
tended even to the quite large threshold q = 15 (cf. Fig. 1,
for which q < 4).

6.3 Short-term memory in the return interval sequence

To investigate the short-term memory in the return in-
tervals of the records, we study the conditional PDF,
Pq(τ |τ0), which is the probability of finding a return inter-
val τ immediately after a return interval of size τ0 [73]. In
records without memory, Pq(τ |τ0) should be identical to
Pq(τ) and independent of τ0. Otherwise, it should depend
on τ0. Due to the poor statistics for a single τ0, we study
Pq(τ |τ0) for a bin (range) of τ0. The entire database is
partitioned into 8 equal-size subsets, Q1, Q2, ..., Q8, with
intervals in increasing length. Figure 4 shows the scaled
Pq(τ |τ0) for oil and gold with 1.00 ≤ q ≤ 1.70. For τ0 in
Q1, the probability is larger for small τ , while for τ0 in Q8,
the probability is higher for large τ . Thus, large (small)
τ0 tend to be followed by large (small) τ (“clustering”),
which indicates memory in the return interval sequence.
Thus, long-term correlations in the volatility records af-
fect the PDF of intervals as well as the time organization
of τ . Note also that for all thresholds Pq(τ |τ0) seems to
collapse onto a single scaling function for each of the τ0
subsets. Also, they can be well fit by a stretched expo-
nential according to equation (11). The exponents γ are
0.27 for Q1 and 0.30 for Q8 for oil, and 0.25 (Q1) and
0.25 (Q8) for gold. These results are consistent with daily
stocks and currencies data [73] and intraday stocks and
index data [74].

10
-1

10
0

τ/τ
0.5

0.6

0.7

0.8

0.9

1

2

3

<
τ|τ

0>/
τ

q=1.00
q=1.12
q=1.23
q=1.35
q=1.47
q=1.58
q=1.70

10
-1

10
0

τ/τ

Oil Gold

Fig. 5. (Color online) Mean conditional return interval
〈τ |τ0〉/τ̄ versus τ0/τ̄ for volatility records for the daily oil and
gold time series for seven threshold values q from 1.00 to 1.70.
For records without memory, we expect 〈τ |τ0〉/τ̄ ≡ 1, as sup-
ported by the open symbols obtained for volatility shuffled
records. The lines show a linear fit to the data.

Further, the short-term memory is also seen in the
mean conditional return interval 〈τ |τ0〉, which is the first
moment of Pq(τ |τ0), immediately after a given τ0 subset.
〈τ |τ0〉 for oil and gold are shown in Figure 5 and GE stock
in Figure 6. It shows again that large (small) τ tend to
follow large (small) τ0, similar to the clustering in the
conditional PDF Pq(τ |τ0). Correspondingly, shuffled data
(empty symbols) are almost constant, demonstrating that
the value of τ is independent of the previous interval τ0.
The noise for these stock data (Fig. 6) is less than the
noise for the data in Figure 5, presumably because the
total number of data points in each dataset is 185 000 for
GE, but only 5000 for oil and gold.

6.4 Clustering of return intervals

Clustering phenomena are displayed by Pq(τ |τ0) and
〈τ |τ0〉, indicating time memory. However, both functions
measure the intervals that immediately follow an inter-
val τ0. In order to investigate clustering in a more direct
way, we analyze “clusters” of return intervals, which are
composed by successive intervals with similar size [74,75].
To obtain good statistics we divide the sequence of return
intervals into two bins, separated by the median of the
entire database. We denote intervals that are above the
median by sign “+”, and the ones below the median by
“–”. Accordingly, n consecutive “+” or “–” intervals form
a cluster.

The distribution of cluster size n may reveal more
memory information in the sequence. Figure 7 shows the
cumulative distribution of the size n for intraday data for
GE stock. Both positive and negative clusters have quite
long tails. For “+” clusters, the distribution still has good
statistics to size n = 18, while the “–” clusters extend to
n = 25. The memory effects persist for a quite long time
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GE (but only 5000 for oil and gold).
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turn interval clusters, which consist of consecutive return in-
tervals that are all above (open symbols) or below (closed sym-
bols) the median of all the interval records. The GE stock is
shown. Note that the two types of clusters have different tail
behaviors.

(e.g., the average return interval for GE with threshold
q = 2 is about 9.3 min, so there are still some clusters cor-
responding to even 200 min in time scale). We also note
that the distribution of “+” clusters is very similar for dif-
ferent thresholds q = 2, 3, 4, while the “–” clusters show
the same effect for n ≤ 10. Similar clustering has been
found also in earthquake and climate data [10,83].

6.5 Long-term memory in the return interval sequence

In the previous sections, we presented indications for
short-term and medium-term memory in the return in-
tervals sequence. Since in financial markets the volatility
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Fig. 8. (Color online) Correlation exponent α obtained from
detrended fluctuation analysis (DFA) of volatility and return
intervals. DFA curves (fluctuation F (�) vs. �) are fitted in two
regimes, small scales (�1 day) and large scales (�1 day) [49].
The correlation exponent α for 30 DJIA stocks and for the S&P
500 index (the stocks are identified by their tick symbols, e.g.,
AA denotes Alcoa Inc.) are shown. Note that most datasets
have a smaller exponent for intervals than for volatilities, but
their differences still are in the range of the error bars. Shuffled
records (triangles) yield α values around 0.5 that indicate no
correlation. Both small scales (α1 = 0.66 ± 0.01 and α1 =
0.64 ± 0.02, group average±standard deviation for volatilities
and intervals, respectively, see Eqs. (8) and (12)) and large
scales (α2 = 0.98± 0.04 and α2 = 0.92± 0.04 correspondingly)
appear to show different correlations for different scales, since
α1 	= α2. Adapted from [74].

is known to have long-term correlations, the natural ques-
tion is: can we detect long-term correlations in the return
intervals? We apply the DFA method [63–65] to the return
intervals, and the results are shown in Figure 8. Similar to
volatilities, the DFA curves of return intervals of the S&P
500 index and 30 DJIA stocks can be split into two regimes
� < �∗ and � > �∗ (�∗ ≈ 93 for return intervals, which cor-
responds to ≈1 day). We see that the corresponding val-
ues for α, α1 and α2 respectively, are distinctly different
in the two regimes. Both α1 and α2 are larger than 0.5,
suggesting long-term correlations in the return intervals
time series, but they are not the same for different time
scales.

In the short scale regime (� < �∗), we find

α1 = 0.64 ± 0.02, (12a)

which is almost the same as for volatility [49] (the differ-
ences are within the error bars). In the large scale regime
(� > �∗), we find

α2 = 0.92 ± 0.04, (12b)

and the differences between volatilities and return inter-
vals are again in the range of the error bars. Here “error
bars” refer to the error bars of each dataset which are on
average ≈0.06, not the standard deviation of α1 and α2 as
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calculated from all 31 datasets we analyzed. Such behav-
ior suggests a common origin for the strong persistence of
correlations in both volatility and return interval records,
and in fact the clustering in return intervals is related to
the known effect of volatility clustering [84–86].

7 A method for risk estimation

After studying the statistics of return intervals, we now
want to focus on a possible application. In particular, the
scaling and memory properties of the return interval time
series can be used for a new method of risk estimation [72].
The most common indicator of risk in the financial world
is value-at-risk (VAR), which is defined by the risk at a
“level of loss” Λ

−Λ∫

−∞
p(G)dG = p∗, (13)

where p∗ is the probability of loss and p(G) is the proba-
bility density function for returns G(t).

In previous sections, we analyzed return intervals be-
tween events, where the absolute value of the return ex-
ceeds a threshold q. Now we focus on losses below −q in
order to estimate their risk. Since

τ̄q ≡ 1
Nq

Nq∑
i=1

τq(i), (14)

where
Nq∑
i=1

τq(i) ≈ total number of returns, (15)

and

Nq + 1 = number of returns with G < −q, (16)

the average return interval τ̄q can be related to the VAR
via equation (13) with Λ = q,

τq
−1 =

∫ −q

−∞
p(G)dG =

number of returns G < −q
total number of returns

.

(17)
This means that τ̄−1

q gives the loss probability for a risk
level −q.

In the following we use the additional memory infor-
mation contained in the sequence of {τi} to improve the
estimation of the risk level of loss −q. First, we estimate
the conditional mean return loss interval τ̄q(τ0) depending
on the previous return interval τ0. We also expect that, in
analogy to equation (17)

1
τ̄q(τ0)

=
∫ −q

−∞
p(G|τ0)dG. (18)

Here p(G|τ0) is the conditional probability that a return
G will follow a return interval τ0. The conditional mean

return interval τ̄q(τ0) should be a straight line in a double
logarithmic plot (see Fig. 6), so that

log
(
τ̄q(τ0)
τ̄q

)
∝ log

(
τ0
τ̄q

)
. (19)

Furthermore, τ̄−1
q scales like a certain power of q, τ̄q ∼ qψ

(e.g., ψ = 3.3 for IBM). Thus, the scaling properties of the
return interval time series enable us to estimate τ̄q(τ0) also
for large values of q. The memory in the return intervals
as shown in Figure 6 gives us a more accurate estimation
of the probability for a loss p∗ in equation (13). Since the
condition τ0 changes every day, the risk level for the next
day also changes according to the conditional mean τ̄q(τ0),
which can be estimated with this method.

8 Discussion and conclusions

We analyzed the properties of the return intervals in finan-
cial time series. The scaling properties of the probability
density function are very important because they help us
to compensate the lack of data for large price fluctuations.
Using the scaling relations, we can estimate the probabil-
ity distribution of return intervals for large thresholds (ex-
treme events) by analyzing the distribution derived from
small thresholds.

We also found memory effects in the time series of
return intervals. These correspond to the memory in the
volatility time series, suggesting that they might be due
to the same mechanism.

As an application, we use the scaling properties of the
return intervals to get a method to estimate the risk of a
certain loss. These results could lead to a better under-
standing and better modeling of risk in economics as well
as in other research fields such as climate or earthquakes.
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Rosenow, J. Nagler, F. Pammolli, I. Vodenska and especially
A. Bunde and L. Muchnik for collaboration on many aspects of
this research, and the NSF and Merck Foundation for financial
support.
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